Statistics S1 Mark scheme

Question	Scheme		
1(a)	$S_{ww} = 41252 - \frac{640^2}{10} = 292$	M1A1	
	$S_{wp} = 27557.8 - \frac{640 \times 431}{10} = -26.2$	A1	
		(3)	
(b)	$r = \frac{-26.2}{\sqrt{292 \times 2.72}}$	M1	
	=-0.9297 awrt <u>-0.930</u>	A1	
		(2)	
(c)	As weight increases the percentage of oil content decreases o.e.	B1	
		(1)	
(d)	$b = \frac{-26.2}{292} = -0.0897$ awrt <u>-0.09</u>	M1 A1	
	$a = \frac{431}{10} - \left(\frac{-26.2}{292}\right) \times \left(\frac{640}{10}\right) = 48.842$	M1	
	p = 48.8 - 0.0897w	A1	
		(4)	
(e)	$p = 48.8 - 0.0897 \times 60$	M1	
	= 43.4/43.5 awrt <u>43.4/43.5</u>	A1	
		(2)	
(12		2 marks)	
Notes:			
(a) M1: for 1 st A1: for 2 nd A1: for	a correct expression for S_{ww} or S_{wp} (may be implied by one correct answer) either $S_{ww} = 292$ or $S_{wp} = -26.2$ both $S_{ww} = 292$ and $S_{wp} = -26.2$		
(b) M1: for 275	(b) M1: for a correct expression (Allow ft of their S_{ww} or S_{wp} provided $S_{ww} \neq 41252$ and $S_{wp} \neq 27557.8$). Condone missing "-"		
AI: for (At	awrt –0.930 (Condone –0.93 for MIAI if correct expression is seen) aswer only awrt –0.930 scores 2/2 but answer only –0.93 is MIA0)		
(c) B1: For <u>oil</u>	 (c) B1: For a correct contextual description of negative correlation which must include weight and <u>oil</u> (but <i>w</i> increases as <i>p</i> decreases is not sufficient) 		
(d) <u>1st M1: for</u>	a correct expression for <i>b</i> (Allow ft)		
1 st A1: for	awrt -0.09		
$\frac{2^{n\alpha} M1: fo}{2^{nd} \Lambda 1: for}$	2^{nu} M1: for a correct method for <i>a</i> if their value of <i>b</i> (Allow $a = 43.1 + b \times 64$) 2nd A1: for a correct equation for <i>n</i> and us with $a = court 48.8$ and $b = court = 0.0807$. No fractions		
Equ	Equation in x and y is A0		
(e) M1: sul A1: aw	(e) M1: substituting $w = 60$ into their equation A1: awrt 43.4 or 43.5 (Answer only scores 2/2)		

Quest	ion Scheme	Marks
2	$1.5 \times 12 = 18$ 20 people represented by 18 (cm ²) or 1 person is represented by 0.9 (cm ²)	M1
	$x = \frac{20 \times 94.5}{18}$ oe = 105 (people)	M1 A1 cao
	(3	marks)
Notes:		
M1:	For an attempt to relate area to frequency (e.g. $\frac{20}{18}$ or $\frac{18}{20}$ seen)	
M1:	For a correct expression/equation for total frequency e.g. $\frac{18}{20} = \frac{94.5}{x}$	
A1:	For 105 cao	

Question	Scheme	Marks
3 (a)	(Discrete) <u>Uniform</u>	B1
		(1)
(b)	$P(X=4) = \frac{1}{5} \text{ oe}$	B1
		(1)
(c)	$F(3) = \frac{3}{5} \text{ oe}$	B1
		(1)
(d)	P(3X-3 > X+4) = P(X > 3.5)	M1
	$=\frac{2}{5}$ oe	A1
		(2)
(e)	$E(X) = \underline{3}$	
		B1
(0)		(1)
(1)	$E(X^2) = \frac{1}{5} \left(1^2 + 2^2 + 3^2 + 4^2 + 5^2 \right)$	M1
	= <u>11</u>	A1
		(2)
(g)	Var $(X) = 11 - 3^2$ or $\frac{(5+1)(5-1)}{12}$	M1
	= <u>2</u>	Al
		(2)
(h)	11.4 = aE(X) - 3 or $11.4 = 3a - 3$	M1
	<i>a</i> = 4.8	A1
	$Var (4.8X - 3) = `4.8'^2 \times `2'$	M1
	= 46.08 awrt <u>46.1</u>	A1
		(4)
	(1	l4 marks)

Ques	Question 3 continued		
Notes	:		
(a)			
B1:	For uniform.		
(d)			
M1:	For identifying the correct probabilities i.e. $P(X > 3.5)$ or $P(X = 4) + P(X = 5)$		
(f)			
M1:	For a correct expression.		
(g)			
M1:	For either 'their (f)' – 'their (e)' ² or for a correct expression $\frac{(5+1)(5-1)}{12}$		
(h)			
1 st M1: For setting up a correct linear equation using $aE(X) - 3 = 11.4$			
1 st A1	: May be implied by a correct answer.		
2 nd M	1: For "their a^2 "×" their Var(X)" (must see values substituted) (may be implied by a		
	correct answer or correct ft answer)		
	NB: 'their $Var(X)$ ' < 0 is M0 here.		

Questi	on Scheme	Marks	
4(a)	7.5 <u>and</u> 25	B1	
		(1)	
(b)	Mean = 10.3125 awrt <u>10.3</u>	B1	
		(1)	
(c)	$\sigma = \sqrt{\frac{120125}{80} - 10.3125^2}$	M1	
	= 6.6188 (s = 6.6605) awrt <u>6.62</u>	Al	
		(2)	
(d)	Median = $\{5\} + \frac{20}{24} \times 5$ or $\{10\} - \frac{4}{24} \times 5$	M1	
	= 9.16666 awrt <u>9.17</u>	A1	
		(2)	
(e)	Mean > median ∴ positive skew	M1A1	
		(2)	
(f) $t = 10v + 5$			
	Mean = $10 \times 10.3125 + 5$	M1	
	=108.125 awrt <u>108</u>	A1	
	$\sigma = 10 \times 6.6188$	M1	
	= 66.188 (66.605 from s) awrt <u>66.2</u>	Al	
		(4)	
	(1	2 marks)	
Notes:			
(a)			
BI:	Both values correct (may be seen in table)		
(D) R1∙]	for awrt 10.3 (Do not allow improper fractions)		
(c)			
M1:]	<i>I</i> : For a correct expression including the square root (allow ft from their mean)		
A1:]	1: For awrt 6.62 (Allow $s = awrt 6.66$)		
(d)			
M1:]	: For a correct fraction: $\frac{20}{24} \times 5$ or if using $n + 1$ for $\frac{20.5}{24} \times 5$ may be scored from working		
	down $-\frac{4}{24} \times 5$		
A1:	For awrt 9.17 or (if using $n + 1$) for awrt 9.27		

Question 4 notes continued

(e)

M1: For a correct comparison of 'their b' and 'their d' (must have an answer to both (b) and (d)) Comparison may be part of bigger expression e.g. 3(mean - median)/s.d. Allow use of $Q_3 - Q_2 > Q_2 - Q_1$ only if $Q_1 = 5$ and $Q_3 = 15$ are both seen For positive skew (which must follow from their values) A1: **(f)** M1: (1st M1) For $10 \times$ " their mean "+5 $(2^{nd} M1)$ or $10 \times$ "their sd" M1: Use of decoded data to find mean must be fully correct, i.e. 8650/80 = awrt 108 (M1A1) Use of decoded data to find s.d. must be fully correct, $(8650)^2$ = awrt 66.2 (M1A1) i.e. |1285750 80 80

Question	Scheme	Marks	
5(a)	$P(T=2) = 3 \times \frac{1}{6} \times \frac{1}{6} = \frac{1}{12}$ oe	M1 A1	
		(2)	
(b)	P(T=3) = [P(0, 3) + P(1, 2) + P(2, 1)] + P(3)		
	$= \left(\frac{1}{6} \times \frac{1}{2}\right) + \left(\frac{1}{6} \times \frac{1}{6}\right) + \left(\frac{1}{6} \times \frac{1}{6}\right) + \frac{1}{2}$	M1 M1	
	$=\frac{23}{36}$ oe	Al	
		(3)	
(c)	$P(T = 3 \text{ rolled twice}) = \frac{P((T = 3) \cap \text{die rolled twice})}{P(\text{die rolled twice})}$	M1	
	$=\frac{\frac{5}{36}}{\frac{1}{2}}$	M1	
	$=\frac{5}{18}$ oe	A1	
		(3)	
N - 4		8 marks)	
Notes:	nswer only in (a). (b) or (c) scores full marks for that part.		
Methods	leading to answers > 1 score 0 marks		
(a) M1. F.			
A1: A	low exact equivalent $(\frac{1}{2} \times \frac{1}{2} = \frac{1}{12}$ is M0A0).		
(b)	(b) $(6 + 2) = 12$ is initially.		
M1: Fo	r $\frac{1}{2}$ + at least one correct product.		
M1: Fo	r fully correct expression.		
A1: A	low exact equivalent.		
(c) M1: Fo	For correct conditional probability ratio (this mark may be implied by 2^{nd} M1) but going on to assume independence [using numerator P($T = 3$) × P(rolled twice)] is M0M0A0.		
M1: Fo	r a correct numerical ratio of probabilities (allow ft of (their (b) $-\frac{1}{2}$) as numerato	or).	
A1: A	low exact equivalent.		

Question	Scheme		Marks
6(a)	$[P(A \cup C) =]\frac{9}{10} \text{ oe}$		
(b)	$P(A \cup B) = P(A) + P(B) - P(A) \times P(B)$		
	$\frac{5}{8} = \frac{2}{5} + P(B) - \frac{2}{5}P(B)$		
	$P(B) = \frac{3}{8} *$		Alcso
			(4)
(c)	$[P(A B) = P(A) =]\frac{2}{5} \text{ oe}$		B1
			(1)
(d)		Diagram	B1
	$A \qquad \qquad$	0.15 <u>and</u> 0.25	M1
		0.05 <u>and 0.05</u>	IVI I
		0.175 <u>and</u> 0.325	M1
	0.325 0.05		AI
	С		
			(5)
		(1	1 marks)
Notes:			
(b) M1: For use of $P(A \cup B) - P(A) + P(B) - P(A \cap B)$			
M1: For use of P($A \cap B$) = P(A) × P(B) (But just seeing $2 \times 3 = 3$ on its own is M0M0)			
A1: A	A1: A correct equation		
A1: (N	o wrong working seen dependent on all previous marks)		

(allow a full verification method, however, substitution of P(B) = 3/8 into only one P(B) to find the other P(B) (e.g. using 3/20 to find 3/8) can score M1M0A0A0)

Question 6 notes continued

(d)

- B1: 3 circles intersecting, see diagram above, (at least 2 labelled) with the two zeros showing A does not intersect C (Do not allow blank spaces for the two zeros)
 <u>or</u> 3 circles, see diagram below, (at least 2 labelled) where B intersects A and C but A and C do not intersect.
- **M1:** 0.15 placed in $(A \cap B \cap C')$ and 0.25 placed in $(A \cap B' \cap C')$
- **M1:** 0.3 'their 0.25' and 1 ('their 0.15' + 'their 0.25' + 'their 0.05' $+\frac{1}{2}$)
- M1: $\frac{3}{8}$ ("their 0.15" + "their <u>0.05</u>"), i.e. $P(B) = \frac{3}{8} \text{ and } \frac{1}{2}$ "their 0.175", i.e. $P(C) = \frac{1}{2}$
 - For the 3^{rd} M mark, blank regions inside P(B) and P(C) are not treated as 0s and score M0
- A1: fully correct with box

Questio	1 Scheme	Marks	
7(a)(i)	$P(X > 505) = P\left(Z > \frac{505 - 503}{1.6}\right)$	M1	
	= 1 - P(Z < 1.25) = 1 - 0.8944	M1	
	= 0.1056 awrt <u>0.106</u>	A1	
		(3)	
(ii)	$P(501 \le X \le 505) = 1 - 2 \ge 0.1056$ or $0.8944 - 0.1056$	M1	
	= 0.7888 awrt <u>0.789</u>	A1	
		(2)	
(b)	$P(X < w) = 0.9713$ or $P(X > w) = 0.0287$ (may be implied by $z = \pm 1.9$)	M1	
	$\frac{w-503}{1.6} = 1.9$ or $\frac{(1006-w)-503}{1.6} = -1.9$	M1	
	w = 506.04 awrt <u>506</u>	A1	
		(3)	
(c)	$\frac{r-503}{q} = -2.3263$	M1A1	
	$\frac{r+6-503}{q} = 1.6449$	M1A1	
	1.6449q - 6 = -2.3263q	ddM1	
	q = 1.51 awrt <u>1.51</u>	Al	
	<i>r</i> = 499.48 awrt 499	A1	
		(7)	
	(1	5 marks)	
Notes:			
(a)			
(i) M1. S	and ordining with 505, 502 and 1.6. May be implied by use of 1.25 (Allow \pm)		
M1: 5 M1: F	or $1 - P(Z < 1.25)$ i.e. a correct method for finding $P(Z > 1.25)$ (Allow \pm)		
e	g. $1 - p$ where 0.5		
(ii)			
M1: 1	$-2 \times \text{their}(i)$		
(b)			
MI: F M1· ^	For using symmetry to find the area of one tail (may be seen in a diagram) A single standardisation with 503 ± 1.6 and $\frac{1006}{1006}$ with		
	ad set = $\pm z$ value (1.8 < $ z $ < 2)		
A1: F	or awrt 506 which must come from correct working. (Answer only: 506 scores 0/3) 06.0with no working send to review)	3, but	

PMT

Question 7 notes *continued*

(c)
M1:
$$\frac{r-503}{q} = z$$
 value where $|z| > 2$
A1: $\frac{r-503}{q} = awrt - 2.3263$ (signs must be compatible)
M1: $\frac{r+6-503}{q} = z$ value where $|z| > 1$
A1: $\frac{r+6-503}{q} = awrt 1.6449$ (signs must be compatible)
Special Case:

Less than 4dp *z*-values: use of awrt 2.32/2.33/2.34 **and** awrt 1.64/1.65 could score M1 A0 M1 and then A1 provided both equations have compatible signs.

3rd M1:(dep on both Ms) attempt to solve simultaneous equations leading to a value for q or r**3rdA1:** Or awrt 1.51

4thA1: For awrt 499 (allow 499.5)

PMT